情報論理 2012年 期末試験 9月3日

諸注意

- 全6問,問題は4ページある。
- 解答用紙に解答せよ. 裏面等を使う場合は、その旨をはっきりわかるよう に記すこと.
- 答案には問題の番号を明記すること.
- 解答は日本語・英語のどちらで行ってもよい. 英語のよく書けたものには 加点を行う.
- ノート・参考書等の参照は不可.
- 不正行為には厳正に対処する.

Question 1.

- (1) Below is the definition of primitive recursive (PR) functions. Fill in the blanks (i) (v).
 - (a) The function zero : $\mathbb{N}^0 \longrightarrow \mathbb{N}$, given by zero() = 0, is PR.
 - (b) The successor function $\operatorname{suc}:\mathbb{N}\longrightarrow\mathbb{N}$, given by $\operatorname{suc}(x)=$ [i), is PR.
 - (c) The projection function $\operatorname{proj}_i^n : \mathbb{N}^n \longrightarrow \mathbb{N}$, given by $\operatorname{proj}_i^n(x_1, \dots, x_n) = \boxed{\text{(ii)}}$, is PR. Here $i \in [1, n]$.
 - (d) Composition of PR functions is PR. That is,

$$\frac{g:\mathbb{N}^m\to\mathbb{N}\text{ is PR}\quad g_1:\mathbb{N}^n\to\mathbb{N}\text{ is PR}\quad\cdots\quad g_m:\mathbb{N}^n\to\mathbb{N}\text{ is PR}}{g\left(g_1(\vec{x}),\ldots,g_m(\vec{x})\right)\text{ is PR}}$$

(e) (Primitive recursion) Let $g: \mathbb{N}^n \to \mathbb{N}$ and $h: \mathbb{N}^{(iii)} \to \mathbb{N}$ be PR functions. Then the function $f: \mathbb{N}^{(iv)} \to \mathbb{N}$ defined by

is PR. Here (iii) and (iv) are the arities of h and f, respectively.

(2) Show that the predecessor function

$$\operatorname{pred}(x) \ := \ \begin{cases} x-1 & \text{if } x \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

is PR. (Hint: look carefully at how primitive recursion is formulated)

Question 2.

- (1) Give an example of a recursive function that is not PR.
- (2) Give an example of a recursively enumerable (RE) predicate that is not recursive.
- (3) Answer if each of the following statements is true or false. (No need for proofs or counterexamples, though desired)
 - (a) If $P \subseteq \mathbb{N}^m$ is recursive, $\neg P$ (i.e. $\mathbb{N}^m \setminus P$) is recursive.
 - (b) If $P\subseteq \mathbb{N}^m$ is recursively enumerable, $\neg P$ (i.e. $\mathbb{N}^m\setminus P)$ is recursively enumerable.
- (4) What is "Negation Theorem"?
- (5) If $P,Q\subseteq\mathbb{N}^m$ are recursively enumerable, $P\vee Q$ is recursively enumerable. Prove this.
- (6) If $P,Q\subseteq\mathbb{N}^m$ are recursively enumerable, $P\wedge Q$ is recursively enumerable. Prove this.

Question 3.

Let $P \subseteq \mathbb{N}$ be a predicate; and consider the following conditions (a-c).

(a) There is a recursive function $g: \mathbb{N} \to \mathbb{N}$ such that

$$P = \mathrm{dom}(g) = \{x \in \mathbb{N} \mid \text{the value } g(x) \text{ is defined} \}$$
 .

(b) $P \subseteq \mathbb{N}$ is either empty, or there is a PR function $h : \mathbb{N} \to \mathbb{N}$ such that

$$P = image(h) = \{h(x) \mid x \in \mathbb{N}\}.$$

(c) There exists a recursive predicate $Q \subseteq \mathbb{N}^2$ such that, for for any $x \in \mathbb{N}$,

$$P(x)$$
 holds \iff $Q(x,y)$ holds for some $y \in \mathbb{N}$.

Answer the following questions.

- (1) Show that (b) implies (c).
- (2) Show that (c) implies (a).
- (3) Show that (a) implies (b).

(Hint: transform g into the Kleene normal form. You would also need Gödel numbers of sequences.)

Question 4.

- (1) Prove that, if
 - $f: \mathbb{N}^m \to \mathbb{N}$ is a recursive function and
 - its domain $\{\vec{x} \mid f(\vec{x}) \text{ is defined}\}\$ is a recursive predicate,

then f can be extended into a total recursive function.

(2) Prove that, if $P \subseteq \mathbb{N}$ is RE and $g : \mathbb{N} \to \mathbb{N}$ is recursive, then the predicate

$$\{g(x) \mid x \in P\} \subseteq \mathbb{N}$$

is RE.

Question 5.

- (1) Explain each the following keywords using a few lines.
 - (a) Universal recursive function
 - (b) Recursion theorem
- (2) Answer if each of the following statements is true or false. (No need for proofs or counterexamples, though desired)
 - (a) Given $k \in \mathbb{N}$, it is decidable if it is a code of a total recursive function.
 - (b) Given $k \in \mathbb{N}$, it is decidable if it is a code of some (not necessarily total) recursive function.
 - (c) Given natural numbers $k, l \in \mathbb{N}$, it is decidable if they are codes of the same recursive function.

Question 6.

Describe what you know about Gödel's incompleteness theorem. It can be:

- its intuition,
- its statement,
- a rough sketch of its proof,
- its relationship to Gödel's completeness theorem,

or else.