2012年度 情報論理 (0510014) 中間試験 6月18日

諸注意

- 全6問,問題は4ページある。
- 解答用紙に解答せよ. 裏面等を使う場合は、その旨をはっきりわかるよう に記すこと.
- 答案には問題の番号を明記すること. ・
- 解答は日本語・英語のどちらで行ってもよい。英語のよく書けたものには 加点を行う。
- ノート・参考書等の参照は不可.
- 不正行為には厳正に対処する.

Question 1.

Answer the following questions.

(1) Let (Σ, E) be the following algebraic specification.

$$\Sigma_0 = \{e\}$$
, $\Sigma_2 = \{\cdot\}$, $\Sigma_1 = \Sigma_3 = \Sigma_4 = \cdots = \emptyset$;
 $E = \{\mathbf{s} \cdot \mathbf{t} = \mathbf{t} \cdot \mathbf{s} \mid \mathbf{s}, \mathbf{t} \text{ are } \Sigma\text{-terms}\} \cup \{e \cdot \mathbf{t} = \mathbf{t} \mid \mathbf{t} \text{ is a } \Sigma\text{-term}\}$
 $\cup \{\mathbf{t} \cdot \mathbf{t} = \mathbf{t} \mid \mathbf{t} \text{ is a } \Sigma\text{-term}\}$

Give an example of a (Σ, E) -algebra.

(2) Give explicit formulas for the following (capture-avoiding) substitutions.

$$(Q(x) \land \exists x. R(x,y))[g(y)/x] (Q(y) \land \exists x. R(x,y))[f(x)/y]$$

- (3) Let P, Q, R, \ldots be propositional variables. For each of the following propositional formulas, tell if it is valid or not. If it is valid, give a proof tree in LK; if it is not, give a valuation $J: \mathbf{PVar} \to \{\mathsf{tt}, \mathsf{ff}\}$ that makes the formula false. (You can consult Fig. 1 in the end)
 - (a) $(P \supset Q \supset R) \supset ((P \land Q) \supset R)$
 - (b) $((P \supset Q \supset P) \supset P$
 - (c) $((P \supset Q) \supset P) \supset P$
- (4) For each of the following predicate formulas, tell if it is valid or not. If it is valid, give a proof tree in LK; if it is not, give a structure $\mathbb S$ and a valuation J over $\mathbb S$ that makes the formula false. Here P,Q,R are predicate symbols of the arity 0,1,2, respectively. (You can consult Fig. 1 in the end)
 - (a) $\exists x. \forall y. R(x,y) \supset \forall y. \exists x. R(x,y)$
 - (b) $\forall x. \exists y. R(x,y) \supset \exists y. \forall x. R(x,y)$
 - (c) $(P \supset \forall x. Q(x)) \supset \exists x. (P \supset Q(x))$

Question 2.

Let \leq be a preorder (i.e. a reflexive and transitive relation) over a set X.

(1) Show that the relation $\lesssim \cap \gtrsim$ is symmetric.

The relation $\lesssim \cap \gtrsim$ is easily shown to be reflexive and transitive; hence it is an equivalence relation. We denote it by \sim .

(2) Show that we have

$$x \sim x'$$
, $y \sim y'$, $x \lesssim y \implies x' \lesssim y'$.

This means that the relation \lesssim on the quotient set X/\sim , defined by

$$[x]_{\sim} \lesssim [y]_{\sim} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad x \lesssim y$$

is well-defined.

(3) Show that the induced relation \leq on X/\sim is antisymmetric.

The induced relation \lesssim on X/\sim is easily shown to be reflexive and transitive, too. Thus it is a partial order.

Question 3.

In propositional LK, we consider restricting the (INIT) rule to the following one:

$$\overline{P \Rightarrow P}$$
 (Init), $P \in \mathbf{PVar}$

that is, only initial sequents with propositional variables are allowed. We denote the resulting deductive system by LK'. Show that LK and LK' has the same deductive power—that is, a formula is derivable in one system if and only if it is derivable in the other.

Question 4.

Let f be a 2-ary function symbol, and R be a 2-ary predicate symbol. Consider the following predicate formulas.

$$A_1 :\equiv \forall x. R(x, x)$$

$$A_2 :\equiv \forall x, y. (R(x, y) \supset R(y, x))$$

$$\begin{array}{ll} A_3 := & \forall x,y,z. \left(R(x,y)\supset R(y,z)\supset R(x,z)\right) \\ A_4 := & \forall x,y. \left(R(x,f(x,y))\land R(y,f(x,y))\right) \end{array}$$

$$A_4 :\equiv \forall x, y. (R(x, f(x, y)) \land R(y, f(x, y)))$$

$$A_5 :\equiv \forall x, y, z. (R(x, z) \supset R(y, z) \supset R(f(x, y), z))$$

(1) Present a structure S_1 such that

$$\mathbb{S}_1 \models A_1 \land A_2 \land A_3 \land A_4 \land A_5$$
, (IFIs) for his year.

that is, a structure S_1 that makes all the formulas A_1, \ldots, A_5 valid.

(2) Present a structure S_2 such that

$$\mathbb{S}_2 \models A_1 \wedge A_2 \wedge A_3$$
 but $\mathbb{S}_2 \not\models A_4 \wedge A_5$.

Question 5.

In the first-order predicate logic, let us write FV(A) for the set of free variables in a formula A. Similarly we write FV(t) for the set of free variables in a term t.

(For simplicity, you can restrict the set of logical connectives to $\{\neg, \land, \forall\}$. You can forget about \lor, \supset , and \exists .)

- (1) What are $\mathrm{FV} \big(f(g(x,y),z) \, \big)$ and $\mathrm{FV} \big(\forall y. P(x,y) \wedge Q(z) \, \big)$?
- (2) Give a precise definition of FV(t) and FV(A) by induction.
- (3) Prove the following two facts by induction.
 - (a) Let t be a term, $\mathbb S$ be a structure, and J,J' be valuations over $\mathbb S$ such that

$$J(x) = J'(x)$$
 for each $x \in FV(t)$.

Then we have $[t]_{\mathbb{S},J} = [t]_{\mathbb{S},J'}$.

(b) Let A be a formula, $\mathbb S$ be a structure, and J,J' be valuations over $\mathbb S$ such that

$$J(x) = J'(x)$$
 for each $x \in FV(A)$.

Then we have $[A]_{S,J} = [A]_{S,J'}$.

Question 6.

Describe what you know about "soundness" and "completeness." (The meaning of the words, their relationship, how one proves them, etc. Not too long; at most one page)

Figure 1: Derivation rules of LK