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Question 1.

Answer the following questions.
(1) Let (3, E) be the following algebraic specification.
Yo=det - To={-}, Ti=3z=Yu—--=0; :
E={s-t=t-s|s,tare S-terms} U{e-t =t |t is a X-term}
U{t-t=t|tis a I-term}
Give an example of a (X, F)-algebra.

(2) Give explicit formulas for the following (capture-avoiding) substitutions.
(Q(@) A3z R(z,y) ) l9w)/z] (Q(y) ATz R(z,y) ) [f(2)/y]

(3) Let P,Q, R, ... be propositional variables. For each of the following propo-
sitional formulas, tell if it is valid or not. If it is valid, give a proof tree
in LK; if it is not, give a valuation J : PVar — {tt,ff} that makes the
formula false. (You can consult Fig. 1 in the end)
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(4) For each of the following predicate formulas, tell if it is valid or not. If it is
valid, give a proof tree in LK; if it is not, give a structure S and a valuation

J over S that makes the formula false. Here P, @, R are predicate symbols
of the arity 0, 1,2, respectively. (You can consult Fig. 1 in the end)
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Question 2.

Let < be a preorder (i.e. a reflexive and transitive relation) over a set X.
(1) Show that the relation < N 2 is symmetric.

The relation < N 2 is easily shown to be reflexive and transitive; hence it is an
equivalence relation. We denote it by ~.

(2) Show that we have
zert ey s iang - w Sy
This means that the relation < on the quotient set X/ ~, defined by
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is well-defined.
(3) Show that the induced relation < on X/ ~ is antisymmetric.

The induced relation < on X/ ~ is easily shown to be reflexive and transitive,
too. Thus it is a partial order.

Question 3.

In propositional LK, we consider restricting the (INIT) rule to the following one: -

G (In1T), P € PVar

that is, only initial sequents with propositional variables are allowed. We denote
the resulting deductive system by LK’. Show that LK and LK’ has the same
deductive power—that is, a formula is derivable in one system if and only if it
is derivable in the other.

Question 4.

Let f be a 2-ary function symbol, and R be a 2-ary predicate symbol. Consider
the following predicate formulas.

A= Vo Rixiz)

Ay = Vz,y. (R(m, )= R(y,m))

Aoi= Noeue [Ray o Rl,2) >Rz o))
Ap— v (R i vl Rl )

Ax = i Wr oy el CRGe2) OR (e O Ry (w,0), 2] )

(1) Present a structure S; such that
: Si = AL A Az AAs A Ay A A
that is, a structure S; that makes all the formulas Ai, ..., As valid.
(2) Present a structure Sy such that
So = A1 AAsANAs but So e AgAAs .



Question 5.

In the first-order predicate logic, let us write FV(A) for the set of free variables
in a formula A. Similarly we write FV(¢) for the set of free variables in a term
t. :

(For simplicity, you can restrict the set of logical connectives to {—, A, V}. You
can forget about V, D, and 3.)

(1) What are FV( f(g9(z,9),2)) and FV(Vy. P(z,y) A Q(2))?
(2) Give a precise definition of FV(¢) and FV(A) by induction.
(3) Prove the following two facts by induction.

(a) Let t be a term, S be a structure, and J, J' be valuations over S such
that
Jo) = T for each z € FV(t).
Then we have [t]s,s = [t]s,0-

(b) Let A be a formula, S be a structure, and J, J’ be valuations over S
such that
J(z)=J'(z)  for each z € FV(A).

Then we have [A]s,; = [A]s, /-

Question 6.

Describe what you know about “soundness” and “completeness.” (The meaning
of the words, their relationship, how one proves them, etc. Not too long; at most
one page)
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Figure 1: Derivation rules of LK



