

2012年度 情報論理 (0510014) 中間試験 6月18日

諸注意

- 全6問, 問題は4ページある.
- 解答用紙に解答せよ. 裏面等を使う場合は、その旨をはっきりわかるよう に記すこと.
- 答案には問題の番号を明記すること.
- 解答は日本語・英語のどちらで行ってもよい。英語のよく書けたものには 加点を行う。
- ノート・参考書等の参照は不可、
- 不正行為には厳正に対処する.

Question 1.

Answer the following questions.

(3)

(1) Let (Σ, E) be the following algebraic specification.

$$\Sigma_0 = \{e\}$$
, $\Sigma_2 = \{\cdot\}$, $\Sigma_1 = \Sigma_3 = \Sigma_4 = \cdots = \emptyset$;
 $E = \{\mathbf{s} \cdot \mathbf{t} = \mathbf{t} \cdot \mathbf{s} \mid \mathbf{s}, \mathbf{t} \text{ are } \Sigma\text{-terms}\} \cup \{e \cdot \mathbf{t} = \mathbf{t} \mid \mathbf{t} \text{ is a } \Sigma\text{-term}\}$
 $\cup \{\mathbf{t} \cdot \mathbf{t} = \mathbf{t} \mid \mathbf{t} \text{ is a } \Sigma\text{-term}\}$

Give an example of a (Σ, E) -algebra.

272

(2) Give explicit formulas for the following (capture-avoiding) substitutions.

$$\big(\,Q(x) \wedge \exists x.\, R(x,y)\,\big)[g(y)/x] \quad \big(\,Q(y) \wedge \exists x.\, R(x,y)\,\big)[f(x)/y]$$

typo (www. (3) Let P, Q, R,... be propositional variables. For each of the following propositional formulas, tell if it is valid or not. If it is valid, give a proof tree in LK; if it is not, give a valuation J: PVar → {tt, ff} that makes the formula false. (You can consult Fig. 1 in the end)

(4) For each of the following predicate formulas, tell if it is valid or not. If it is valid, give a proof tree in LK; if it is not, give a structure $\mathbb S$ and a valuation J over $\mathbb S$ that makes the formula false. Here P,Q,R are predicate symbols of the arity 0,1,2, respectively. (You can consult Fig. 1 in the end)

(a)
$$\exists x. \forall y. R(x,y) \supset \forall y. \exists x. R(x,y)$$
(b) $\forall x. \exists y. R(x,y) \supset \exists y. \forall x. R(x,y)$
(c) $(P \supset \forall x. Q(x)) \supset \exists x. (P \supset Q(x))$

$$\forall x. \exists y. R(x,y) \supset \exists x. (P \supset Q(x))$$

Question 2.

Let \lesssim be a preorder (i.e. a reflexive and transitive relation) over a set X.

- (1) Show that the relation $\lesssim \cap \gtrsim$ is symmetric. The relation $\lesssim \cap \gtrsim$ is easily shown to be reflexive and transitive; hence it is an equivalence relation. We denote it by \sim .
- (2) Show that we have $x \sim x'$, $y \sim y'$, $x \lesssim y \implies x' \lesssim y'$.

This means that the relation \lesssim on the quotient set X/\sim , defined by

$$[x]_{\sim} \lesssim [y]_{\sim} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad x \lesssim y$$

is well-defined.

(3) Show that the induced relation \lesssim on X/\sim is antisymmetric. The induced relation \lesssim on X/\sim is easily shown to be reflexive and transitive, too. Thus it is a partial order.

Question 3.

In propositional LK, we consider restricting the (INIT) rule to the following one:

$$\overline{P \Rightarrow P}$$
 (INIT), $P \in \mathbf{PVar}$

that is, only initial sequents with propositional variables are allowed. We denote the resulting deductive system by LK'. Show that LK and LK' has the same deductive power—that is, a formula is derivable in one system if and only if it is derivable in the other.

Question 4.

Let f be a 2-ary function symbol, and R be a 2-ary predicate symbol. Consider the following predicate formulas.

g predicate formulas.

$$A_1 :\equiv \quad \forall x. \, R(x,x)$$
 $A_2 :\equiv \quad \forall x, y. \, \left(R(x,y) \supset R(y,x)\right)$
 $A_3 :\equiv \quad \forall x, y. \, z. \, \left(R(x,y) \supset R(y,z) \supset R(x,z)\right)$
 $A_4 :\equiv \quad \forall x, y. \, \left(R(x,f(x,y)) \land R(y,f(x,y))\right)$
 $A_5 :\equiv \quad \forall x, y. \, \left(R(x,z) \supset R(y,z) \supset R(f(x,y),z)\right)$

(1) Present a structure S₁ such that

$$\mathbb{S}_1 \models A_1 \wedge A_2 \wedge A_3 \wedge A_4 \wedge A_5 ,$$

that is, a structure S_1 that makes all the formulas A_1, \ldots, A_5 valid.

(2) Present a structure \mathbb{S}_2 such that $\mathbb{S}_2 \models A_1 \wedge A_2 \wedge A_3 \quad \text{but} \quad \mathbb{S}_2 \not\models A_4 \wedge A_5 .$

Question 5.

10

In the first-order predicate logic, let us write FV(A) for the set of free variables in a formula A. Similarly we write FV(t) for the set of free variables in a term t.

(For simplicity, you can restrict the set of logical connectives to $\{\neg, \land, \forall\}$. You can forget about \lor, \supset , and \exists .)

- (1) What are FV(f(g(x,y),z)) and $FV(\forall y. P(x,y) \land Q(z))$?
- (6) (2) Give a precise definition of FV(t) and FV(A) by induction.
 - (3) Prove the following two facts by induction.
 - (a) Let t be a term, $\mathbb S$ be a structure, and J,J' be valuations over $\mathbb S$ such that

$$J(x) = J'(x)$$
 for each $x \in FV(t)$.

Then we have $[t]_{S,J} = [t]_{S,J'}$.

(b) Let A be a formula, $\mathbb S$ be a structure, and J,J' be valuations over $\mathbb S$ such that

$$J(x) = J'(x)$$
 for each $x \in FV(A)$.

Then we have $[A]_{S,J} = [A]_{S,J'}$.

Question 6.

Describe what you know about "soundness" and "completeness." (The meaning of the words, their relationship, how one proves them, etc. Not too long; at most one page)

Figure 1: Derivation rules of LK

(1)
$$= x = \{0, 1\}$$

(2) $= \{0, 1\}$

(1) $= \{0, 1\}$

of integers

$$X = \{0\}$$

$$[9]$$

$$[-]_{\times} = 0$$

$$[-]_{\times} : (0,0) \mapsto 0$$

 $(3)^{(a)} \nabla a i d$. $\overline{Q} = \overline{Q}$

$$P \Rightarrow P$$

$$Q \Rightarrow Q \Rightarrow R$$

$$P \Rightarrow (3-R)$$

$$P \Rightarrow (Q \Rightarrow R), P \Rightarrow Q$$

$$(3-R)$$

$$P \Rightarrow (Q \Rightarrow R), P \Rightarrow Q$$

$$(A-L) (twice)$$

$$P \Rightarrow (Q \Rightarrow R), P \Rightarrow Q$$

$$(Q \Rightarrow Q \Rightarrow Q$$

S H = (9) [(b) Nor valid. Consider I s.r. (c) Valid P => P (Weat.-R) $P \Rightarrow P_{,Q}$ $(>-P_{,Q})$ $\Rightarrow P_{,P>Q}$ P => P (>-L) $(P > Q) > P \Rightarrow P, P$ (Contr.-R) $(P>Q)>P \Rightarrow P \qquad (>-P)$ \Rightarrow (P > Q) > P > P(4) (a) Valid. $\overline{R(x,3)} \Rightarrow R(x,3) - (A-\Gamma)(3-B)$ (50) (3-4)(J-E) (8,x) (J-E) (8-R) (7C) $\exists x. \forall y. R(x,y) \Rightarrow \forall y. \exists x. R(x,y)$ -.. (B) (b) Not valid (diagonal) V = {0,1} [R] = { (0,0), (1,1) } = (00

(c) Talid. (Pf tree 17 DZ)

02

(1) $(x,y) \in \mathbb{R} \cap \mathbb{R}$ $(x,y) \in \mathbb{R} \cap \mathbb{R}$ $(x,y) \in \mathbb{R} \cap \mathbb{R}$ $(y,x) \in \mathbb{R} \cap \mathbb{R}$

(2). By $\chi \sim \chi'$, $\chi' \lesssim \chi$. By $\chi \sim \chi'$, $\chi \lesssim \chi'$. By asmp., $\chi \lesssim \chi'$.

By transitivity of E, x' E y'.

(3) Assume $[x]_n \lesssim [y]_n$ and $[y]_n \lesssim [x]_n$.

x & y , y & x .

Thus $x \sim y$, that is, $[x]_{\sim} = [y]_{\sim}$.

03

- LK' has less rules than LK, so

is obvious.

- For the apposite direction, it suffices to show that the (INIT) rule

A => A (INIT) in LK (A: any formula)

is admissible in LK'.

By induction on the construction of A.

Q4 (02)

[a5] 教料書の Lem. 4.3.6. Lem. 4.3.7の証明を参考に.

(0) (0)